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Abstract

Understanding the human body’s tissue biomechanics — the physical 
deformation and variations in intrinsic mechanical properties — 
has considerable potential in health monitoring, disease diagnosis 
and bioengineering. However, current tools for decoding tissue 
biomechanics rely on rigid and bulky devices that are not compatible 
with biological tissues. Such a discrepancy results in inaccurate 
measurement and even pain and discomfort for the subjects 
undergoing the measurement. To overcome the limitations of 
current tools, conformable electronic devices have been developed 
for monitoring internal and external tissue biomechanics. Moreover, 
by adopting advanced machine-learning approaches, more insights 
can be gained from the collected data. In this Review, we provide 
a comprehensive overview of conformable electronic devices for 
tissue biomechanics decoding. We discuss basic principles for 
external and internal tissue decoding, focusing on electromechanical 
transduction for external tissue decoding and on ultrasonography 
for internal tissue decoding. Then, we highlight various data analysis 
methods, including machine-learning algorithms. Finally, we outline 
challenges and future directions.
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and the mechanical vibrations (for example vocal, cardiovascular or 
respiratory) of the human body. Effectively decoding external tissue 
biomechanics requires innovative materials and device designs to 
obtain high sensitivity, a wide operational range and good reliability19,20.

Principles of external tissue biomechanics decoding
The main strategy for decoding external tissue biomechanics is direct 
electromechanical transducing, that is, the conversion of mechani-
cal deformation into electrical signals (Fig. 1). When biological tis-
sues are subjected to external mechanical deformation, conformably 
attached sensors can accurately detect such deformations by convert-
ing them into electrical signals (changes in voltage, current or resist-
ance)21. Other external biomechanics sensing methods, such as optical 
(through the monitoring of light intensity or resonance frequency 
changes upon deformation) and inertial measurement units (through 
the monitoring of acceleration and changes in orientation of the tis-
sue upon deformation), have been demonstrated and are detailed in 
Supplementary Note 1.

Piezoresistivity. Piezoresistivity denotes electrical resistance 
changes upon mechanical deformation or stress. This effect comes 
from various fundamental mechanisms including modification of the 
band gap, changes in geometry and modifications of the conduction 
path22,23 (Fig. 1).

In semiconducting materials such as Si and Ge, the band gap can 
be modified by external strain owing to conduction band splitting, 
which can enhance the carrier mobility24. An example device exploit-
ing piezoresistivity by band gap modification is the microfabricated 
ultrathin Si nanomesh, which has been adopted as a conformable strain 
gauge to monitor small strains25. Although inorganic semiconducting 
material-based strain sensors have high sensitivity, intrinsic brittleness 
of inorganic materials limits their application to the measurement of 
small strains, whereas conformable devices typically operate under 
high strains (>30%). To overcome the intrinsic brittleness of inorganic 
semiconducting materials, various other piezoresistive mechanisms 
and structure modifications have been considered.

When thin metal films are stretched beyond their failure strain, 
microcracks start to form, which results in piezoresistivity26. These 
microcracks are closed and a portion of the conduction path is restored 
when the applied strain is released (Fig. 1a). Such reversible disconnec-
tion and connection of microcracks upon mechanical deformation can 
be used to decode external tissue biomechanics.

Various multidimensional nanomaterials including nanoparti-
cles, nanowires, nanotubes and nanosheets have also been utilized as 
building blocks for flexible, stretchable and transparent electrodes27–29. 
Because the physical contact between each nanomaterial is maintained 
by very weak van der Waals interactions, the electrical conduction path 
formed by networks of nanomaterials can easily be affected by external 
mechanical deformation (Fig. 1b). In that case, the electrical conduc-
tion relies on tunnelling, which is highly dependent on the distance 
between nanomaterials30:
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in which e is a quantum of electricity, m the electron mass, h Planck’s 
constant, d the distance between nanomaterials, λ the energy barrier 
height of the dielectric medium through which the electrons should 
tunnel and A the cross-sectional area of the tunnel30.

Introduction
Tissue biomechanics refers to the mechanical dynamics of the human 
body and to the spatiotemporal variability of the intrinsic mechanical 
properties of biological tissues1. Such tissue biomechanics reflects 
the biological status of the human body, including body motion, car-
diorespiratory function, disease progression, verbal activities, reha-
bilitation and internal organs dynamics (Box 1). Hence, decoding the 
tissue biomechanics of the human body has considerable potential in 
various biomedical applications including regular health monitoring2,3, 
disease diagnosis4–6, rehabilitation7,8, robotics9,10, augmented reality 
(AR), virtual reality (VR)11 and wearable point-of-care therapy12.

However, the decoding of tissue biomechanics faces several funda-
mental challenges related to long-term usage, signal accuracy, comfort-
ability and safety, owing to the inherent mechanical mismatch between 
the current measurement tools and biological tissues (Box 2). Conven-
tional devices for tissue biomechanics decoding are usually rigid, bulky, 
expensive, unamenable and require mechanical pressure to maintain 
contact, which can cause pain and distort measurements13. Some of 
the conventional tools used for decoding internal tissue biomechan-
ics, such as computed tomography and mammography, also involve 
radiation exposure, which is potentially harmful for regular medical 
usage (Table 1). Moreover, as these tools are expensive and not portable, 
individuals are required to visit medical institutes in-person, which limit 
frequent monitoring, especially in developing countries and rural areas14.

In this regard, soft miniaturized devices with wearable form factors 
have gained considerable interest for the decoding of external and/or 
internal tissue biomechanics in real-time in a portable, convenient 
and non-invasive manner15 (Table 1). To accurately monitor tissue 
biomechanics without the need for excessive mechanical pressure or 
support from professionals, maintaining good conformable contact 
with the tissue is extremely critical (Box 2). With advances in materials, 
device design and analysis techniques, wearable electronic devices 
can maintain good conformability and have been used in several suc-
cessful demonstrations (Table 1). The current state-of-the-art devices 
now show comparable performance with conventional rigid, bulky 
and expensive devices6,16.

Advanced machine-learning algorithms can also be leveraged to 
gain deeper insights from the collected data17,18. Such analysis tech-
niques have been used to accurately reflect biomechanical information, 
with applications in motion classification, vocal-less communication, 
health monitoring and disease diagnosis.

In this Review, we discuss the basic principles and current progress 
of conformable wearable devices for decoding external and internal 
tissue biomechanics. We divide the discussion into two areas: outside 
and inside the body, based on the decoding target. We elaborate on 
various fundamental sensing mechanisms, materials and structure 
design for realizing highly functional conformable devices, focusing 
on electromechanical transduction mechanisms for external tissue 
decoding and on ultrasonography for internal tissue decoding. In 
addition, we present cutting-edge data analysis strategies including 
machine-learning-based approaches and sensor fusion methods. As 
examples, we investigate state-of-the-art biomedical applications. 
Finally, we suggest current challenges and future perspectives towards 
the development of fully portable and practical wearable devices for 
tissue biomechanics decoding.

Decoding external tissue biomechanics
The main targets for external tissue biomechanics decoding are the 
skin, which mainly reflects the dynamics of the joints and muscles, 
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Piezocapacitivity and iontronics. Another approach to decode exter-
nal tissue biomechanics is based on capacitance measurements. When 
a capacitor — composed of a dielectric layer sandwiched between two 
conductive plates (Fig. 1c) — is pressed or stretched, its capacitance 
changes owing to geometrical changes (contact area and thickness of 
the dielectric layer), leading to the piezocapacitive effect7,31:

C ε ε
A
d

= (2)r 0

in which εr and ε0 are the permittivities of the dielectric layer and of free 
space, respectively, A is the area of one of the plates and d is the distance 
between the two plates. Capacitance measurements are resilient to 

Box 1 | Decoding tissue biomechanics
 

Representative targets of biomechanics studies comprise strain, 
pressure, modulus and motion (dynamics)1, which can reflect the 
physiological state and functionality of soft tissues. Such information 
is invaluable for various biomedical applications including health 
monitoring, medical diagnosis and treatment. The target tissues for 
biomechanics decoding can be divided into external envelope (skin) 
and internal organs5 (see the figure).

Here, we define external tissue biomechanics as the mechanics 
decoded from the skin. Because skin deforms with various body 
motions, accompanying a wide range of strain, skin biomechanics 
is effective for the motion detection of various body parts. 
Additionally, because the skin deforms during speech, it can be 
used for speech recognition and vocal-less communication by 
decoding pressure from high frequency vibration. Furthermore, 
the modulus of the skin can aid in diagnosing and monitoring skin 

diseases. Finally, by evaluating the strain or pressure of the skin 
over blood vessels, blood pulses can be decoded through the 
deformation of the skin.

Internal tissue biomechanics comprises the biomechanics 
of inner organs and muscles. Organ dynamics, which generally 
denotes organ movement or volume change, is directly related 
to the functionalities of the organs including the heart, bladder, 
lung, diaphragm, muscle and blood vessels. Moreover, organ 
characteristics also reflect the health status of the tissues. Diseases 
from various organs including the liver, lung and pancreas can 
be detected through the assessment of their elastic modulus. 
Furthermore, tissue anomaly can be detected as anomalies including 
lesion and tumour have distinguishable modulus. Finally, beyond 
simple body vital sign measurements, the decoding of spatial or 
volumetric blood flow configuration is also possible.

Modalities of tissue biomechanics

External tissue biomechanics (decoding outside the body)

Strain Pressure Modulus Dynamics

Skin deformation Skin pressure Skin modulus Blood pulse

Internal tissue biomechanics (decoding inside the body)
Organ dynamics Organ characteristics Internal tissue anomaly Blood flow
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mechanical deformations and are independent of temperature and 
humidity18. However, the sensitivity of piezocapacitive devices is gener-
ally lower than that of piezoresistive devices as it only depends on geo-
metrical changes in the capacitor structure32, whereas in piezoresistive 
devices other mechanisms including percolation network changes are 
also affected by the mechanical deformation33.

To cope with the limitations of piezocapacitive devices, ion-
tronic devices have been proposed. In iontronic devices, mobile 

ions are present in the dielectric layer (Fig. 1d). The major differ-
ence between piezocapacitive and iontronic sensors is that the 
mobile ions form an additional electric double layer at the interface 
between the electrodes and the ionic medium, which increases the 
capacitance of the device. Such electric double layers have ultrahigh 
unit area capacitance of the order of several microfarads per square 
centimetre, around three to four orders of magnitude higher than 
traditional parallel plate capacitors34 (Fig. 1c). Such high capacitance 

Box 2 | Conformable decoding
 

To obtain accurate information through conformable devices with 
minimum noise, motion artefacts and delamination, maintaining good 
conformable contact is extremely important269–271. Conformability 
in wearable electronics refers to maintaining seamless contact 
with biological tissues without delaminating during dynamic 
motion. Conventional materials used to fabricate electronic devices 
have a Young’s modulus several orders of magnitude higher than 
biological tissues (see the figure, panel a). Even polymers used for 
substrates (polyimide (PI), SU-8 and polydimethylsiloxane (PDMS)) 
have a higher Young’s modulus than most biological tissues. To 
increase conformability, two main strategies have been developed. 
The first approach is developing devices with soft materials 
including hydrogels and conjugated polymers. Another approach is 
structurally modifying devices made with conventional materials. The 
conformability of devices not only depends on the Young’s modulus 

but also on the bending stiffness of the structure, which is proportional 
to the Young’s modulus and to the cube of the thickness of the 
structure272,273. Hence, if the total structure is thinner than a certain 
threshold thickness, the device can maintain conformal contact with 
soft biological tissues (see the figure, panel b). In this Review, we 
mainly focus on the second approach. Good adhesion with biological 
tissues is also an important factor to maintain conformability. Although 
devices with a thin geometry can maintain conformable contact 
with biological tissues through van der Waals interactions, stronger 
adhesion mechanisms are required for accurate positioning and 
long-term monitoring without delamination (see the figure, panel c).

PEDOT:PSS, poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate); PVDF, polyvinylidene fluoride; PZT, 
lead–zirconate–titanate. Information contained in panel a is from 
refs. 230,274–281. Panel b reprinted with permission from ref. 282, Wiley.

1 Pa 1 kPa 1 MPa 1 GPa 1 TPa

Fat Brain Skin Muscle Heart Gut Bone

SiO2 Au Ti Cu Si Pt Ir PZT GrapheneHydrogel PDMS PEDOT:PSS PI SU-8 PVDF

a

b

c

500 µm 5 µm36 µm100 µm

Good conformability

Blood vessel

Device

Skin

Poor conformability Device drift Delamination

Ecoflex
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Table 1 | Decoding targets and comparison of corresponding conventional tools and conformable devices

Decoding target Categories Conventional 
tools

Limitations Mechanisms of 
conformable devices

Characteristics of conformable 
devices

Body motion External 
tissue 
decoding

Motion capture 
cameras
IMU, 
accelerometer 
and gyroscope

Expansive, bulky and limited 
dimensionality (cameras)
Low accuracy due to drift and frequent 
calibration required (IMU)244

Combination of multiple 
sensing mechanisms 
(nanomaterial 
percolation network and 
microcrack propagation)
Optical fibre

High deformation range: 
bending angle of 140o for  
knee joints245 and 90o 
for finger joints246

System can be miniaturized and 
device conformability

Internal 
tissue 
decoding

EMG Modification of the signal after muscle 
fatigue (EMG)247

Needle-type invasive electrodes 
required (EMG)

Ultrasound imaging 
with A and B mode

Frequency of ultrasound waves: 
~6.5 MHz (ref. 186)
Depth of penetration: ~50 mm 
(ref. 186)

Cardiovascular 
activity

External Cuff Bulky and uncomfortable, improper 
for continuous monitoring (cuff)215

Pressure sensing 
with piezoelectric, 
triboelectric and 
capacitive mechanisms

High sensitivity: over 500 Pa–1 
(ref. 248)

Internal Ultrasound 
imaging machine
PPG
ECG

Large and bulky (ultrasound imaging 
machine)6

Professional operator needed  
(ultrasound imaging machine)6

Sensitive to skin colours, contact 
pressure and motion artefacts (PPG)249

Large motion artefact and accurate 
positioning of electrodes required (ECG)

Ultrasound imaging  
with A, B, M and  
Doppler mode
Photoacoustic imaging
Electromagnetic sensing 
mechanism

Frequency: ~2 MHz (ref. 122)
Depth: ~15 cm (ref. 122); 
frequency: ~2.5 MHz (ref. 250)
Depth: <30 mm (ref. 250)
Implantable sensing devices 
needed in some cases251

Speech recognition External Microphone Limited in noisy environments177 Pressure sensing 
with piezoelectric 
and piezoresistive 
mechanism

Wide range of operational 
frequencies: response time less 
than 10 ms for facile motion 
detection90 and more than 
1 kHz for vocal cord vibration 
monitoring177,217,218

Skin modulus External In situ indentation, 
tensile, suction 
and torsion tests

Large and bulky5

Not suitable for continuous monitoring
Lateral acoustic wave 
propagation and 
reception
Electromagnetic sensing 
mechanism

Uses actuator–sensor pairs5

Magnet-induced vibration and 
strain gauge sensing4

Internal MRE179 Large and bulky179 Ultrasound imaging with 
B and transmission mode

Frequency: ~3 MHz (ref. 179)
Depth: ~40 mm (ref. 179)

Organ movement Internal Ultrasound 
imaging machine
Implantable 
devices

Large and bulky (ultrasound imaging 
machine)
Professional operator needed 
(ultrasound imaging machine)
Operation needed to implant devices 
(implantables)

Ultrasound imaging 
with A, B, M and Doppler 
mode
Mechano-acoustic 
sensing mechanism

Frequency: ~3 MHz (ref. 118)
Depth: 2–12 mm (ref. 118)
Can be used for signals from 
different organs including the 
heart, lungs and the intestine 
with signal decomposition

Organ characteristics Internal Ultrasound 
imaging machine
MRI
CT

Large and bulky (all)
Professional operator needed (all)
Radiation from the machine (CT)

Ultrasound imaging 
with A, B, M and Doppler 
mode

Frequency: ~7.5 MHz (ref. 219)
Depth: 40–60 mm (ref. 219)

Organ volume Internal Ultrasound 
imaging machine
MRI
CT

Large and bulky (all)
Professional operator needed (all)
Radiation from the machine (CT)

Ultrasound imaging with 
B mode

Frequency: ~3.5 MHz (ref. 106)
Depth: ~15 cm (ref. 106)

Muscle activity Internal EMG
MRE179

Modification of the signal after muscle 
fatigue (EMG)
Large and bulky (MRE)

Ultrasound imaging 
with A, B, M and 
Doppler mode

Frequency: ~3 MHz (ref. 179)
Depth: ~40 mm (ref. 179)

Tissue anomaly Internal Palpation
Mammography
MRI
CT
Ultrasound 
imaging machine

Inaccuracy (palpation)
Large and bulky (mammography, MRI, 
CT, ultrasound imaging machine)
Radiation from the machine 
(mammography, CT)
Professional operator needed (all)

Ultrasound imaging with 
B mode

Frequency: ~7 MHz (ref. 6)
Depth: ~80 mm (ref. 6)

A mode, amplitude mode; B mode, brightness mode; CT, computed tomography; ECG, electrocardiography; EMG, electromyography; IMU, inertial measurement unit; M mode, motion mode; 
MRE, magnetic resonance elastography; MRI, magnetic resonance imaging; PPG, photoplethysmography.
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can provide ultrahigh sensitivity and resolution for a wide range of 
pressures35.

Triboelectricity. The triboelectric effect has become one of the most 
important mechanisms for power generation and sensing in wearable 
devices36,37. When two different materials are put in contact, charge 
transfer occurs at the interface38 (Fig. 1e). Electron transfer at the inter-
face is mainly caused by the work function difference between the 

materials38, in which electrons move from materials with higher work 
functions to materials with lower work function39. Mobile ions can also 
move across the interface. Adsorbed water molecules on the surface 
contribute to ion transfer by spontaneously forming H+ and OH− ions38. 
Material transfer can also occur during electrification, which contrib-
utes to charge transfer reactions in triboelectric devices38,40. When two 
contacted materials are separated or sheared against each other, an 
electrical field is generated by the separation of charges. By utilizing 
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diverse device design strategies, the triboelectric mechanism can be 
utilized to measure tissue biomechanics41,42.

Piezoelectricity. Another major sensing mechanism for tissue bio-
mechanics decoding is piezoelectricity, which harnesses the charge 
accumulation exhibited by certain types of materials upon mechanical 
deformation or stress43,44. Piezoelectric materials usually have an asym-
metric unit cell, polar axis and no inversion symmetry in their crystal 
structure, which makes the charge neutralization of the system easily 
disturbed45. Hence, when piezoelectric materials are mechanically 
deformed, a large amount of charge can be generated owing to polariza-
tion, which is called a direct piezoelectric effect (Fig. 1f). Conformable 
devices based on piezoelectric materials also have a capacitor-type 
structure (Fig. 1f). When the mechanical deformation is applied to 
piezoelectric devices, an electric field is generated. A detailed theoreti-
cal discussion for the output voltage under mechanical deformation 
is discussed in Supplementary Note 2. Conversely, when an electric 
field is applied to the piezoelectric material, a mechanical deforma-
tion can be induced, which is called a converse piezoelectric effect. 
Both mechanisms can be efficiently utilized in conformable devices.

Materials, structures and design criteria for external tissue 
biomechanics decoding
Various mechanisms have been developed to decode external tissue 
biomechanics using conformable devices. A key challenge in this area 
involves selecting suitable materials and designing device structures 
that enable accurate and efficient biomechanical decoding. These 
considerations are critical to the performance and reliability of 
conformable devices in practical applications.

Piezoresistive devices. The most fundamental mechanism of pie-
zoresistivity is electronic band structure tuning owing to mechanical 
deformation. Although semiconducting materials such as Si have good 
piezoresistive properties, their intrinsic brittleness limits their effec-
tiveness when applied to conformable devices. Hence, various strate-
gies have been developed to enable conformable contact between 

semiconducting inorganic materials and biological tissues46. The first 
approach is to use ultrathin (<100 nm) semiconducting films with 
thin substrates (<10 µm). The deformation and stress distribution of 
‘plates’ under external forces or bending moments can be calculated 
using the plate bending theory. According to this theory, the stress 
applied to thin films is proportional to the total thickness of the device 
and bending radius47. For instance, if the total thickness of the Si is less 
than 10 μm, the tensile strain applied to the Si is around 0.7% under 
a bending radius of 1 mm, which is lower than the failure strain of Si 
(about 1%)48, which indicates that using ultrathin film can minimize 
the strain applied to the inorganic semiconducting layer. To further 
minimize the mechanical strain applied to the specific thin film, the 
device structure can be engineered to place the inorganic thin film in 
the neutral mechanical plane (NMP) (Fig. 1g). The position of the NMP 
can be defined as:
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in which yNMP, Ei and di are the position of the NMP from the top surface, 
Young’s modulus and thickness of the ith layer, respectively49.

Because the strategy mentioned earlier can only reduce the bend-
ing strain, another approach is required to reduce the tensile strain. For 
example, to reduce the applied strain during stretching, semiconduct-
ing membranes can be patterned into a smaller area and connected with 
serpentine interconnects called ‘island–bridge’ structures (Fig. 1h). By 
reducing the area density, the amount of strain applied to the semicon-
ductor membrane is decreased, as most of the strain is concentrated 
on the serpentine interconnects.

By adopting these approaches, even brittle inorganic semicon-
ducting materials such as Si can be conformably attached to soft 
biological tissues. For example, Si nanomembranes with serpentine 
traces placed in the NMP can be stretched up to 30% strain and show 
no degradation in piezoresistive property after 50,000 cycles of 
stretching25. Three-dimensional Si nanomembranes have also been 

Fig. 1 | Mechanisms of external tissue biomechanics decoding. a, Mechanism 
(left) and design considerations (right) for conformable devices using 
microcrack engineering. When large channel cracks are formed during 
mechanical deformation, the electrical resistivity increases substantially even 
at low strain (<10%) owing to disrupted conduction channels. Although when 
small microcracks are formed, electrical conduction path can be maintained, 
resulting in minimal increase in electrical resistance. b, Mechanism (left) and 
design considerations (right) for conformable devices using multidimensional 
nanomaterials. The piezoresistive sensing mechanism is illustrated for 
1D nanowire-based devices. Changes in the tunnelling distance between 
nanomaterials induce a change in the electrical resistance of the device, as 
shown in the equation. c, Mechanism (left) and design considerations (right) 
for piezocapacitive devices. The deformation of the dielectric layer induces 
a capacitance change. d, Mechanism (left) and design considerations (right) 
for iontronic devices. The formation of an electrical double layer at the ionic 
medium–electrode interface can substantially increase the capacitance of the 
device. e, Mechanism (left) and design considerations (right) for triboelectric 
devices. The charge transfer between two different materials during contact 
induces an electric field across two electrodes, which results in voltage difference 
or electrical current between the electrodes. f, Mechanism (left) and design 
considerations (right) for piezoelectric devices. Mechanical deformations 
such as bending and pressing induce lattice distortion to the piezoelectric 

materials, which result in the formation of an electrical field between the two 
electrodes sandwiching the piezoelectric thin film. g, Mechanism (left) and 
design considerations (right) of the neutral mechanical plane (NMP) design in 
multilayered thin films. The NMP in a multilayered system is determined by the 
Young’s modulus and the thickness of the components. h, Mechanism (left) and 
design considerations (right) of the serpentine interconnect method. Mechanical 
strain applied to the devices is mainly induced to the serpentine interconnects, 
hence minimizing the stress induced to the active device components. i, Various 
types of multidimensional nanomaterials for conformable electronics. Scanning 
electron microscopy image of (top right) 0D nanoparticles and (top left) 1D 
nanowires (top right) deposited on the substrate. Schematic illustration of 2D 
materials (bottom). j, Various microstructured layers for enhancing sensing 
performance. Schematic illustration of micropyramidal (top) and porous 
(bottom) dielectric layers under mechanical deformation. Such microstructured 
dielectric layers are widely used to increase the sensitivity of multiple sensing 
mechanisms including piezocapacitivity, iontronic sensing and triboelectricity. 
k, Examples of organic piezoelectric materials. Schematic illustration of organic 
piezoelectric materials. Functional groups with high polarity contribute to 
the piezoelectric performance of organic materials. PLLA, poly(l-lactic acid); 
PVDF, polyvinylidene fluoride. For definitions of other variables, see the main 
text. Panel i (left) reprinted from ref. 57, CC BY 4.0. Panel i (right) reprinted with 
permission from ref. 230, American Chemical Society.
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investigated for decoding external soft tissues biomechanics50. These 
3D structured devices have several advantages over conventional pla-
nar geometries including high mechanical sensitivity, insensitivity to 
temperature and ability to decode multiple mechanical deformations 
including shear stress50. Although such microfabricated inorganic 
thin film-based conformable devices have good deformability and 
reliable performances, this approach requires complicated fabrication 
processes and has a limited operational strain range (<30%)25 (Table 2 
and Supplementary Table 1).

Another strategy to design piezoresistive devices is microcrack 
engineering. When designing microcrack-based biomechanics sen-
sors, the most important thing to consider is the geometry of the 
microcracks based on the target operational strain range51. If large 
channel cracks are formed during stretching, electrical disconnec-
tion can easily occur and electrical resistance markedly increases 
even when a small strain is applied (Fig. 1a). This approach is suit-
able for highly sensitive mechanical deformation sensing within 
a small operational strain range. However, if high stretchability is 
required, the morphology of the films can be modified to enable 
the propagation of a large number of small microcracks. In this sce-
nario, the conduction paths can be maintained even under high strain 
(Fig. 1a). This morphology can be modified by controlling various 
parameters including the deposition rate, deposition temperature, 
substrate pretreatment and geometry52–54 (Supplementary Note 3). 
Microcrack-based conformable devices are advantageous owing to 
their relatively simple fabrication process (vacuum deposition or 
solution process without photolithography) and wide operational 
range (Supplementary Table 1). However, owing to difficulties in 
controlling the microcrack geometry, achieving device-to-device 
uniformity is challenging (Table 2).

Nanomaterials can exhibit piezoresistive properties owing to 
changes in their percolation network and in the tunnelling distance 
between each nanomaterial. When designing nanomaterial-based 
piezoresistive sensors, the dimensions of the nanomaterial should 
be carefully selected based on target applications and corresponding 
deformation range. Zero-dimensional materials (Fig. 1i) are suitable for 
high sensitivity measurements but they have a low operational range 
(<10% strain) owing to their inherent low aspect ratio, which can easily 
lead to the disconnection of the conduction path under mechanical 
strain55–58. Owing to their high aspect ratio, 1D or 2D materials are more 
appropriate for measuring high deformations (Fig. 1i). One-dimensional 
and two-dimensional materials have several unique advantages such 
as a low percolation threshold, large mechanical deformability, high 
optical transparency, optoelectronic properties and mechanical 
softness59–63. When designing 1D and 2D nanomaterial-based biome-
chanics sensors, the geometry and structure of the percolation network 
can be optimized depending on the target deformation range and 
sensitivity64, for example, by adjusting the density of the percolation 
network65 or by directionally aligning the nanomaterials66.

To achieve both high sensitivity and stretchability, multiple sens-
ing mechanisms can be combined (Supplementary Note 4). Most widely 
utilized nanomaterials including Ag nanowires, Au nanoparticles, gra-
phene and silver nanoplates can be synthesized by solution processes 
with a large volume67–70 and easily processed into thin films71,72. How-
ever, nanomaterials have intrinsic limitations including inconsistent 
performance and size variability of individual nanomaterials (Table 2 
and Supplementary Table 1).

Piezocapacitive and iontronic devices. Piezocapacitive devices are 
advantageous owing to their simple structures and high reliability73–75. 

Table 2 | Comparison of different mechanisms for external biomechanics decoding

Mechanisms Pros Cons Refs.

Piezoresistivity Inorganic 
semiconductors

High accuracy and reliability
High sensitivity at low strain range (<1% strain)

Limited to low deformation range
Complicate fabrication process required

25,253

Microcracks Highly sensitive
Simple structure and fabrication
Wide working range

Difficult to control the microcrack geometry
Large hysteresis
External power required

254,255

Multidimensional 
nanomaterials

Solution processability
Wide selectivity of materials

Low repeatability
Difficult to control the dimension of individual 
nanomaterial
External power required

255,256

Piezocapacitivity High mechanical stability
Low power consumption

Limited detection range
Highly vulnerable to external electromagnetic 
interference
Crosstalk between sensing unit

256,257

Iontronicity High sensitivity and resolution
Low power consumption

Signal drifts from the viscoelastic creep of ionic gels
Ionic solvent leakage and phase separation under the 
pressure (ionic liquid and organogels)
Water evaporation (hydrogels)

34,80,258

Triboelectricity Self-powered
Wide selectivity of materials
High output voltage signal

Sensitive to moisture
Prone to mechanical fatigue

255,259,260

Piezoelectricity Self-powered
High sensitivity
Can generate acoustic waves for various 
sensing mechanisms

High temperature processing required (inorganic 
materials)
Low electromechanical conversion efficiency 
and acoustic pressure (organic materials)
Hysteresis behaviour

256,261
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Various strategies for enhancing their sensitivity and pressure detec-
tion range have also been developed. The most widely adopted meth-
ods use microstructured dielectric layers, such as micropyramid arrays 
and porous dielectric layers75,76 (Fig. 1j). In the micropyramid struc-
ture, deformation in the dielectric layer can occur at the tip of the 
pyramidal shape even at extremely low pressures (even a few pascals, 
enough for measuring small insects) owing to the concentration of 
pressure at the tip. In the porous dielectric layer, similarly, pores can 
be deformed even at low pressure (<10 Pa)77. Such geometrical change 
of the dielectric layer results in changes in the capacitance. However, 
piezocapacitive-based conformable sensors with microstructured or 
porous dielectric layers have a limited detection range owing to the 
saturation of the deformability of the dielectric layer78.

In iontronic devices, various types of ionic media including 
ionic liquids, hydrogels and organogels have been utilized34,79. The 
pros and cons of each ionic medium are discussed in Supplementary 
Note 5. Iontronic devices with microstructured ionic media have both 
high sensitivity and a wide pressure-sensing range. For instance, 
hydrogels with intrafillable ionic-medium-based iontronic devices 
showed extremely high sensitivity (3.3 Pa−1) and high resolution 
(could sense the removal of 17 kg of load from a car with 2,000 kg 
weight)35. Despite these performances, several limitations including 
liquid leakage, phase separation and water evaporation need to be 
overcome79,80 (Table 2).

Triboelectric devices. To induce large charge separation through 
the triboelectric effect, two interfacing materials should have a large 
gap in their triboelectric series81, such that the device can generate 
electrical voltage upon mechanical deformation with high sensitivity. 
For instance, fluoropolymers (polytetrafluoroethylene), polyvinyl 
chloride, polydimethylsiloxane and polyimide have high electron 
affinity, indicating that these materials have a high tendency to get 
electrons from other materials when making contact82. By contrast, 
glass, dry skin, air, nylon and cotton have low electron affinity, indicat-
ing that these materials easily lose electrons when in contact with other 
materials82. Hence, it is critical to select appropriate contact materials 
to obtain highly sensitive sensors.

To effectively convert mechanical signals into electrical signals, 
changes in contact area should be accompanied by continuous repeti-
tive touching and detaching or sliding motions, which lead to surface 
charge transfer. Devices with a textured surface or that enable sliding 
motions can facilitate such charge transfer. Textured surfaces can be 
fabricated through various methods, including the growth of vertical 
nanowire arrays83,84, reactive ion etching85, micropattern moulding86,87 
and the weaving of fabric materials88. Triboelectricity-based external 
biomechanics sensors can be designed to be highly biocompatible, 
conformable and sensitive, but the triboelectric effect is highly sensi-
tive to moisture. Triboelectric materials are also prone to degradation 
by mechanical fatigue (Table 2).

Piezoelectronic devices. Piezoelectric materials can be divided into 
two categories: inorganic ceramics and organic materials. Inorganic 
piezoelectric materials include lead–zirconate–titanate (Pb(Zr1−xTix)
O3, PZT)-based, PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT)-based, BaTiO3, 
K1/2Na1/2NbO3 (KNN), ZnO, GaN and AlN89. Inorganic ceramic piezo-
electric materials possess good piezoelectric properties, such as a high 
electromechanical coupling coefficient, which denotes the effective-
ness of the transduction between electrical and mechanical energy. 
However, similar to inorganic semiconducting materials, they are 

incompatible with conformable devices owing to their inherent brittle-
ness. Hence, similar strategies have been adopted to design conform-
able inorganic ceramic-based piezoelectronic devices. For instance, 
adopting serpentine interconnects and placing the PZT film in the 
NMP can substantially reduce the applied strain to the PZT layer5. A PZT 
layer with such geometry was only subjected to a total strain of 0.1% 
when bent with a 0.3 mm bending radius. Similar approaches were 
also applied to other inorganic piezoelectric thin films including AlN 
and GaN (refs. 90,91).

Several organic materials including polyvinylidene fluoride 
(PVDF)-based copolymer, poly(l-lactic acid), glycine, silk and cellulose 
are piezoelectric because they have large permanent dipoles in their 
polymer chains92 (Fig. 1k). Although organic piezoelectric materials 
have lower piezoelectric performance (low electromechanical coupling 
coefficient) compared with inorganic piezoelectric materials, they 
have several advantages including relatively easy fabrication through 
various solution processing methods, high flexibility with low Young’s 
modulus, good biocompatibility, light weight, low dielectric con-
stant and low acoustic impedance93,94. Among various fabrication pro-
cesses, electrospinning is highly effective at forming high-performance 
organic piezoelectric thin films (Supplementary Note 6).

Most conformable devices for decoding external soft tissues can 
sense normal stresses such as stretching and pressing. However, it is still 
challenging for conformable devices to differentiate shear stress from 
normal stress. To overcome this challenge, novel signal processing and 
device design have been proposed (Supplementary Note 7).

Decoding internal tissue biomechanics
Internal tissue biomechanics conveys important information about 
our health (Box 1). To decode signals from internal organs including 
heart95, stomach96 or muscles97, flexible implantable devices have been 
suggested. These devices generally use sensing methods that are similar 
to those used for external tissue biomechanics decoding98. However, 
specific challenges emerge owing to the invasive nature of implantable 
devices, including power transfer, fast wireless data transmission, 
biofouling and the necessity of removing the device after use99,100.  
In this regard, various non-invasive methods have also been investi-
gated (Table 3).

To achieve the non-invasive decoding of internal tissue biome-
chanics, various strategies using tissue-penetrating modalities, such 
as electromagnetic, acoustic and optical waves, have been adopted 
(Supplementary Note 8 and Table 3). Among them, ultrasonography, 
which utilizes high frequency (>20 kHz) acoustic waves, has gained 
considerable interest because the waves can penetrate deeply through 
the skin, something that is difficult to achieve using the methods men-
tioned earlier101. By managing the frequency range of the ultrasound 
wave, the penetration depth can be adjusted102. When the penetrated 
waves interact with deep biological tissues, which have different acous-
tic characteristics, the reflected waves can provide anatomical infor-
mation about these tissues in a spatiotemporal manner. Moreover, 
ultrasonography can harness diverse imaging methods applicable to 
various objectives (Box 3) and enable the multidimensional (2D and 3D)  
imaging of internal organs through the judicious design of transducer 
element arrays103,104. Because imaging is an intuitive method to ana-
lyse internal tissue biomechanics in real time, it has been effectively 
adopted in the clinic for internal organ monitoring and tissue anomaly 
detection, with applications in disease diagnosis and disease pro-
gression assessment105. Such applications have been realized with 
conformable ultrasound imaging devices6,15,106,107.
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Ultrasonography using conformable electronic devices
Piezoelectric materials are ideal for transmitting and receiving ultra-
sound acoustic waves, making them highly suitable for use in ultrasonic 
transducers for ultrasound imaging15.

Stack configuration of the ultrasonic transducer. When designing 
an ultrasonic transducer for ultrasound imaging, a specific stack 
configuration is necessary to acquire high-resolution images108 
(Fig. 2a). Piezoelectric materials form the core of this stack, enabling 
the transmission and reception of ultrasound waves. Several crucial 
parameters including dielectric property, piezoelectric property and 
acoustic property need to be considered108,109. The dielectric permit-
tivity denotes the ability of a material to store electrical energy under 
electric field, which is related to the polarization and conversion 
efficiency of the piezoelectric materials. The dielectric permittivity is 
also related to the electrical impedance of the material, which should 
be matched with the electrical impedance of the driving electronics 
to maximize power transmittance, which are connected through the  
conductive electrode interconnect. For the piezoelectric property, 
the electromechanical coupling coefficient dictates the effective-
ness of the transduction between electrical and mechanical energy. 
Regarding the acoustic property, the resonant frequency and acous-
tic impedance reflect the speed of sound in the material, and the 
acoustic impedance matching between the transducer and the propa-
gating medium is crucial for efficient wave transmission with minimal 
loss of energy. The matching layer has a crucial role for such acoustic 
matching, whereas the backing layer attenuates unwanted waves, 
ensuring that the acoustic energy is focused solely on the target tissue 
(Supplementary Note 9).

Because ultrasound waves from an optimized device stack can pen-
etrate through tissues with a relatively deeper depth (on the decimetre 
scale), they are effective for imaging and monitoring configuration 
and movements of internal deep tissues101 (Fig. 2b). With proper stack 

composition design and signal analysis approaches, sub-millimetre 
resolution can be achieved101.

Moreover, various modes of imaging can be adopted for diverse 
purposes, including the amplitude mode (A mode), brightness mode 
(B mode), motion mode (M mode) and Doppler mode110 (Box 3).

Conformable single-element ultrasonic transducer. The simplest 
method to fabricate a conformable ultrasonic transducer is to utilize 
a single piezoelectric element as the transducer (Fig. 2c) as it can be 
easily fabricated and is efficient for basic A mode ultrasonography. 
M mode ultrasonography can be also conducted by integrating con-
secutive A mode signals111. To endow conformability to the device, 
which is critical for skin contact-based ultrasonography, adopting 
flexible polymers such as flexible PVDF and PVDF-based polymers as the 
active piezoelectric material has gained considerable interest15. Such 
polymer-based transducers are highly efficient for measuring skeletal 
muscle movements112,113. However, single-element transducers are lim-
ited for 2D imaging as the transducer needs to be spatially translated to 
capture signals. To enable efficient 2D imaging, an array configuration 
that incorporates multiple transducer elements is more appropriate.

Rigid array-based ultrasonic transducer with conformable medium. 
The most conventional device structure for ultrasound imaging is a 
rigid single array of ultrasonic transducers. In this device configuration, 
the transducer array has multiple transmitting and receiving elements. 
Rigid piezoelectric ceramics are mostly used for the active layer, owing 
to their high electromechanical coupling coefficients108. The critical 
limitation is the rigidity of the array, which limits conformable inte-
gration with soft and curved skin surfaces. One approach to enable 
conformable contact uses curved scaffolds (Fig. 2d). For instance, a 
nature-inspired honeycomb scaffold enabled the conformable contact 
of the array to the soft and curved breast tissue6. Adopting soft materi-
als as conformable media is another promising potential approach. 

Table 3 | Comparison of different mechanisms for internal biomechanics decoding

Mechanisms Sensors Pros Cons Refs.

Ultrasonic  
methods

Piezoelectric-based transducer 
stack

Various imaging modes available (A mode, B mode, 
M mode, Doppler mode)
Intuitive imaging (2D, 3D)
Deep-depth tissue sensing (~80 mm)
Spatial information (wide FOV imaging)
Multiplexing element (transmitting–receiving)

Acoustic matching medium 
(for example, gel) needed
Complex circuit and analysis needed

6,15, 
106,107

Optical methods Piezoelectric-based transducer 
stack (photoacoustic)
Photodetector (PPG)

High-dimensional imaging available (photoacoustic)
Simple circuit (PPG)
Simple decoding (PPG)
Compact size (PPG)

Distinct transmitter/receiver pair needed 
(photoacoustic: laser source-receiver, 
PPG: light source-photodetector)
Shallow depth (photoacoustic: ~30 mm, 
PPG: ~3 mm)
Low-dimensional information (PPG)
Limited target tissues (skin and blood 
vessels) (PPG)

250,252, 
262,263

Mechano-acoustic  
methods

Microphone Simultaneous decoding of multiple modalities 
available (heartbeat, respiration, movement, etc.)

Proper attachment site should be 
adjusted
Signal decomposition needed
Low-dimensional information

126,264, 
265

Electromagnetic  
methods

Antenna High spatiotemporal resolution Noise from antenna deformation
Implantable sensing device may  
be needed

101,251, 
266

A mode, amplitude mode; B mode, brightness mode; FOV, field of view; M mode, motion mode; PPG, photoplethysmography.
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Among the soft materials studied, soft bioadhesive hydrogels demon-
strated their versatility for internal tissue imaging of various internal 
organs including heart, lung and stomach114.

Flexible and stretchable array-based ultrasonic transducer. Efforts 
to develop arrays that are flexible and stretchable have also been pur-
sued (Fig. 2e). The simplest approach to achieve a flexible array involves 
integrating rigid elements with flexible substrates and interconnects. 
Flexible printed circuit boards or other polymer materials can be used 
as flexible substrates115. Beyond flexibility, stretchability is one of the 
core requirements to enable advanced wearable electronics, ensuring 
good conformable contact and stable operation of the devices even 
under dynamic movement116,117. In this context, an island–bridge struc-
ture, similar to the serpentine island–bridge structure used to fabricate 
inorganic thin film-based stretchable devices, can be incorporated into 
the ultrasonic transducer array118–120.

Another effective approach involves integrating multiple rigid 
phased arrays with soft, stretchable polymer substrates106. This approach 
enables high-resolution imaging, facilitates the capture of a large field of 
view and allows the placement of the phased arrays in multiple directions 
for multidirectional imaging. For flexible and stretchable ultrasonic trans-
ducer arrays, accurately identifying the relative position of each element 

is critical for focusing the beam and for obtaining high-resolution images. 
Because the relative position of each element can shift owing to skin 
dynamics, researchers have implemented beam steering techniques 
based on surface curvature data acquired from additional biomechanics 
sensors121 or have employed long wavelength ultrasonography, which is 
less sensitive to changes in element positioning122.

Data analysis techniques for device-decoded 
tissue biomechanics
Data analysis methods, from conventional signal processing to 
machine-learning models, facilitate the analysis of data obtained from 
conformable devices123. Sensor fusion — the gathering of multidimen-
sional data from various wearable sensors concurrently — is another 
approach that can enable effective data acquisition and learning for 
various applications123.

Conventional signal analysis techniques
Traditional signal analysis techniques are still widely used for data 
pre-processing and simple data analysis. The most rudimentary but 
efficient method is signal filtering based on a frequency bandwidth 
of interest (Fig. 3a). For example, a low pass filter can get rid of high 
frequency noise, and a high pass filter can attenuate noises from motion 

Box 3 | Modes of ultrasound imaging
 

Ultrasound imaging can harness various types of imaging modes, all 
of which have different objectives (see the figure).

A mode (amplitude mode) is a simple and basic approach for 
measuring 1D deformations in internal tissues283, which depend on 
the variance of the reflected amplitude after the penetrated wave 
interacts with the tissue.

B mode (brightness mode) is the most popular mode of ultrasound 
imaging, especially for medical purposes, because it offers high- 
resolution and real-time spatial imaging284. B mode uses an array of 
ultrasonic transducers to formulate 2D images from the received 
amplitudes284. In this modality, the amplitudes of the reflected 
ultrasound waves from each element are converted to grayscale and 
aligned as a vertical column, and columns from the array elements 
are concatenated to form a 2D ultrasound image of the internal tissue.

M mode (motion mode) targets a specific direction in the internal 
tissue285, which is useful for decoding the temporal biomechanics 

of the movement of the tissue, for example, during the study of 
cardiological behaviours. M mode uses the 1D grayscale values 
obtained from a B mode image, focusing on a specific direction 
towards the target object. The amplitude values along this direction 
become a single column in the M mode image, and values acquired 
at each time step are continuously concatenated as a new column. 
The method is particularly effective for analysing the biomechanics 
of localized target areas over time. In an M mode image, the x axis 
represents time, whereas a B mode image captures a single moment 
in time.

Finally, Doppler mode is based on the Doppler effect283. When 
a transmitted wave is reflected by a moving object, the decoded 
frequency of the reflected wave changes according to the velocity 
of the object. The Doppler mode can be used for analysing the 
intracardiac status with the velocity visualization of the blood in 
different organs286,287.
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artefacts that have low frequencies. Moreover, band pass filtering ena-
bles the acquisition of signals only within a target bandwidth, which is 
effective for heartbeat or respiration monitoring as both have typical 

frequency ranges (heartbeat: 0.9–3 Hz and breath: 0.1–0.7 Hz)124.  
A notch filter can suppress signals from specific frequencies, for 
example, noises from peripheral electrical devices or power sources.

Rigid array

Ultrasonography using conformable electronic devices

Conformable structure design of ultrasound transducer

Stack structure of ultrasound imaging element

Polymer-based piezoelectric material

Flexible substrates Island–bridge structures Stretchable phased arrays
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Fig. 2 | Decoding internal tissue biomechanics via conformable ultrasound 
devices. a, Basic stack structure of the ultrasound imaging element. A matching 
layer and a backing layer are adopted to achieve high imaging performance. 
b, Basic principle of ultrasound imaging for internal tissue biomechanics 
decoding. Left: ultrasound transmission. When an electrical input is applied 
to the piezoelectric active material, mechanical deformation is induced 
and ultrasound waves are generated from the active layer. The wave can 
penetrate into the soft tissue, enabling the investigation of deep internal tissue 
biomechanics. Right: ultrasound receiving. Ultrasound waves reflected from the 
deep tissue can induce the mechanical deformation of the active piezoelectric 
material. As different internal tissue layers have distinctive acoustic 
characteristics, the movement and characteristics of the tissue can be clarified 
in that the receiver material enables the transduction of the reflected waves into 
electrical signals. c, Single flexible element. A single ultrasound imaging stack 
can be utilized as an element for ultrasonography. A mode can be operated with 

a single element, and flexible polymer piezoelectric material, including PVDF-
based materials, can be harnessed to render it conformable. d, Rigid arrays with 
conformable medium. Adopting a flexible medium to fabricate conformable 
ultrasound imaging devices is easy and effective strategy to avoid mechanical 
mismatch between soft tissue and the rigid stack while preserving the high 
performance of the rigid piezoelectric material. Conformable curved scaffold 
(left) and hydrogel (right) allow imaging from the rigid ultrasonic transducer 
on various curved surfaces. e, Flexible and/or stretchable arrays. For a better 
integration of the device with the skin under dynamic conditions, various 
flexible designs including using flexible substrates with multiple transducer 
elements (left), harnessing stretchable interconnects in an island–bridge 
structure (middle) and using phased arrays with stretchable substrates (right) 
have been introduced. Panel e (middle) adapted with permission from ref. 119, 
AAAS. Panel e (right) adapted from ref. 106, Springer Nature Limited.
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Time–frequency domain analysis, including fast Fourier transform 
(FFT), has been used for the analysis of superimposed biomechanics 
signals125 (Fig. 3a). For example, mechano-acoustic signals are usually 
superimposed with various acoustic signals including heartbeat, respi-
ration, body movement and intestinal sounds126. These signals, having 
different frequencies, can be decomposed using FFT. Statistical meth-
ods including linear regression and logistic regression were also used 
in different demonstrations, such as for the estimation of the exhale 
volume from the strain measured on the chest127 and for recognizing 
sitting posture from pressure sensing on the hip128.

Machine-learning-aided analysis
In addition to conventional signal analysis techniques, machine-learning 
methods have been leveraged to enhance data analysis129,130 (Table 4). 
To ensure efficient and accurate analysis from machine-learning mod-
els, diverse aspects of the collected data and the particularities of the 
learning process of each model must be considered131.

Classic machine learning. Classic machine-learning methods132 can be 
divided into unsupervised and supervised learning. The main difference 
between these two learning approaches is the existence of class labels. 
When handling data without class labels, the data can be categorized 
according to their characteristics and features. One of the basic unsu-
pervised learning models is principal component analysis (PCA). PCA 
diminishes the number of variables in the data by adopting orthogonal 
coordinates called principal components, so that it can selectively 
secure components having high variances, which typically possess 
important features and discard components with low variances gener-
ally dominant with noises133. Because the feature reduction approach 
using PCA is effective at diminishing noises from biomechanical data 
and decreases computational costs, it has been efficiently utilized as 
a preprocessing tool for wearable electronics data134–136.

K-means clustering is another unsupervised learning model that 
has been widely used for label-less data clustering. It assigns a prede-
fined number of centres, or clusters (K), and calculates the distance 
between each data point and these centres. The distance metric can 
be selected for each case depending on data, with Euclidean distance 
being the most commonly used137. After this calculation, the position 
of each centre is reassigned according to the calculated means of 
the distances, and data close to each centre can be clustered without 
label137. K-means clustering is efficient for handling large-sized data, 
but a known number of categories or classes and the initial position of 
the centroids are needed for high classification accuracy, which gener-
ally requires domain knowledge138. t-distributed stochastic neighbour 
embedding (t-SNE) enables the visualization of data with multiple 
features by converting them into simple 2D or 3D domains using prob-
ability distributions139. This method is effective for managing nonlinear 
data, but it requires a high computational cost. Therefore, it has been 
usually utilized for data visualization140 or data preprocessing141 and 
combined with other machine-learning models.

When class information for each data is provided, it can be utilized 
as a label to train machine-learning models. Such an approach is called 
supervised learning. For example, support vector machines (SVMs) 
generate a hyperplane — a decision boundary that separates classes — 
with the aim of maximizing the distance between the plane and each 
data point142. This approach allows efficient data classification without 
incurring high computational costs. K-nearest neighbour, another 
supervised learning approach, is similar to K-means clustering, but a 
label is given to each data point to conduct classification143. For new 

data points, the distances from these data points and the predeter-
mined K number of the nearest existing data points are used for the 
classification. The final classification result is determined according to 
the most frequent label among the compared data. SVM and K-nearest 
neighbour models are especially efficient for the analysis of data sets 
with a small number of labels18. Thus, they were used for classifying 
simple body gestures acquired from various external biomechanics 
data including pressure and strain18,90,144. Random forest is composed 
of many decision trees with randomly selected data as an ensemble 
model145. A decision tree uses internal attribute tests to guide input 
data towards a certain decision, and an ensemble of decision trees 
combines the decisions from multiple trees to generate a final decision 
(Fig. 3a). Because each tree enables parallelization and subsampling of 
the data, which reduces the complexity of the model, this method has 
been efficiently adopted for handling large-sized data146–148.

Deep learning. Deep-learning models, utilizing neural networks as 
their backbone149, also have considerable potential for the analysis of 
tissue biomechanics data. The basic component of deep learning is a 
perceptron150 (Fig. 3a), which can be expressed as17:

∑O σ w X b= ( + ) (4)j i ij i j

in which w is the connection weight, b the bias of the node, σ the 
activation function, X the input data and O the output data. The con-
nection weight denotes the importance of each connection, which 
critically influences the performance of the model, and b is a parameter 
that allows a better fit of the model to the data, which are adjustable 
through learning. The activation function determines the activation 
of each neuron, which endows nonlinearity to the model for the effi-
cient solving of complex problems. The most rudimentary model of 
deep learning is the multilayer perceptron, which connects multiple 
perceptrons150. This model has been used for diverse data classifica-
tion and regression tasks, including the classification of posture for 
health monitoring from pressure sensor data17,151. Although multilayer 
perceptron is efficient for simple learning from small-sized data151,152, it 
is computationally inefficient for large-sized data as each node of the 
perceptron is connected with each other.

Convolutional neural networks (CNNs) are more computationally 
efficient for handling of complicated and large-sized data153. CNN-based 
models apply convolutional filters to 2D input data154 including 
images118 and 2D inputs concatenated from multiple 1D data25. As CNN 
harnesses convolution filters155 and pooling layers (which reduces the  
spatial dimension of the input for efficient calculation, endowing 
the model with robustness against transient invariance)156 for the 
training, the number of parameters that need to be trained drasti-
cally reduces. Hence, the CNN model can handle high-dimensional 
data, including 2D images and multichannel time-series data (for exam-
ple, including ultrasound images and mechanical sensor-based motion 
data), with a relatively low computational cost (Table 4).

Another notable deep-learning model is the recurrent neural 
network (RNN). One of the advantages of RNN is its ability to consider 
time variance during computation157. RNN uses a hidden state h for one 
of its inputs, which contains past information as follows17:

∗h σ w h x b= ( [ , ] + ) (5)t f t t f−1

in which σ is the activation function, x the input data, w the weight and 
b the bias. As the tissue biomechanics data collected from conformable 
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devices usually have a temporal component, RNN-based models can 
be one of the most effective deep-learning models for analysis158.

Other advanced models, such as long short-term memory159, 
autoencoder160, generative adversarial network161 and transformer162, 
which are based on the models mentioned earlier, have also been used 
for the analysis of tissue biomechanics data obtained from conformable 
decoding devices. These models have been applied in various contexts, 
such as decoding strain information from finger joints for hand move-
ment analysis, sensing pressure on the wrist for hand rehabilitation and 
predicting missing strain information for tactile perception.

Model selection considering data dimensionality. Input biome-
chanics data can have varying dimensionality, which can affect the 
selection of the analysis model. Point-wise data are low-dimensional 
data that are decoded from intermittent points of time or from a small 
number of sensor nodes. For example, point-wise values of strain, 
pressure and skin modulus can be utilized for health monitoring and 
motion recognition5,163,164. Moreover, features, such as amplitude, 
frequency and statistical features, extracted from complicated data 
are also valuable point-wise data for efficient computation144,165. As 
these data sets have low dimensionality, simple analysis methods can 
be applied. For example, collected point-wise strain or pressure data 
can be clustered using unsupervised machine-learning models such 
as K-means clustering166 and or simple deep-learning models such as  
CNN167 for efficient motion classification. When labelled data are avail-
able, supervised learning models such as SVM144,164 and random forest164 
can be used.

Time-series data are the most common type of tissue biomechan-
ics data and are collected over a certain period of time. Strain varia-
tion, pressure variation, A mode ultrasound, heartbeat, respiration, 
blood pulse and photoplethysmography signals are representative 
time-series tissue biomechanics data. Conventional signal analysis 
methods can be used for signal preprocessing and decomposition, 
and PCA and t-SNE enable dimension reduction for efficient data anal-
ysis. Both classic machine-learning and deep-learning methods have 
been investigated for various estimation and classification applica-
tions (Table 4). Among different deep-learning models, RNN-based 
models can incorporate chronic information by using hidden states 
for the analysis, and they have been effectively utilized for the analysis 
of time-series data158,168,169. Furthermore, wireless communication170,171 
and on-device learning172,173, which can enable portable opera-
tion by direct learning and decision-making without relying on 

centralized infrastructures, are relatively easier to be adopted 
for handling point-wise and time-series data owing to their lower 
computational cost compared with processing multidimensional  
image data.

Multidimensional biomechanics data acquisition can be per-
formed using advanced imaging methods and multisensor decoding 
technology. For example, multichannel time series data159, sensor 
fusion data from multiple sensors174, multimodal data decoded from 
a single device175, ultrasound images of organs118, mapped data of 
biomechanics modalities176 and acoustic spectrograms177 have been 
analysed with various learning models. Deep-learning models includ-
ing CNN-based models have been used for image classification178 
and spectrogram analysis177 for vocal-less voice recognition, which 
have enabled the efficient monitoring of patients recovering from 
laryngectomy, even under dynamic motion. Image recognition and 
segmentation have also been used for cardiovascular status moni-
toring, enabling the estimation of organ volumes and the tracking 
of their dynamics118. Moreover, combining high-dimensional data 
from conformable devices — such as 3D reconstructions of muscle 
ultrasound images179, volumetric Doppler images of brain blood 
vessels107 and volume estimations from 2D images of the bladder and 
heart106,118 — with multidimensional analysis methods is expected 
to enable considerable advances in various applications. However, 
despite important advancements in analysis techniques for multi
dimensional input data, wireless communication178 or on-device 
learning140,180 is still limited because of the considerable cost of data 
transmission and the excessive number of parameters needed in the 
model for learning.

Sensor fusion strategies
Sensor fusion utilizes multiple sensors to collect multidimensional 
data synchronously. Advancement in data analysis techniques, such as 
machine learning, have begun to unlock the potential of the informa-
tive, high-dimensional data collected through sensor fusion within 
conformable devices (Supplementary Note 10).

Sensor fusion for external biomechanics decoding. The sensor 
fusion strategy involves combining the data from multiple biome-
chanics sensors having different degrees of sensitivity to increase 
the sensing range, which is generally limited with a single sensor. For 
instance, conformable hierarchical wearable sensors composed of 
multiple strain sensors can use different materials for each sensor layer 

Fig. 3 | Algorithms for soft tissue biomechanics decoding and sensor 
fusion approaches. a, Overview of the data analysis framework. Input tissue 
biomechanics data have different dimensionalities that can be analysed with 
different models including conventional signal analysis techniques, classic 
machine-learning and deep-learning models. Possible applications include 
estimation, classification and image analysis. b, Multiple mechanical sensor-
based fusion. Harnessing multiple mechanical sensors with different sensitivities 
and sensing range can decode complex information simultaneously (left). 
For example, by utilizing decoded entangled data, five different biomechanic 
information can be analysed with a deep-learning approach (right). c, Image 
sensor-based sensor fusion. Somatosensory strain data from a flexible sensor are 
incorporated with image data of the motion (top). Strain-based somatosensory  
data and visual image data are collected for the fusion data set (middle). Strain  
and visual data fusion allows more robust classification of the hand motion  
with deep-learning approach under various illumination conditions (bottom). 

 d, Electrophysiological sensor-based fusion. Merging data from 
electrophysiological sensors including electrocardiography (ECG) with 
biomechanics data acquired by stretchable ultrasound (US) device has enabled 
estimating characteristics of the deep tissue without direct measurement (top). 
By incorporating the position of the sensors and the time delay between signals 
from the sensors, pulse wave velocity can be calculated from the pulse arrival 
time (PAT) at radial artery (RA) (bottom). BA, brachial artery; BP, blood pressure; 
CNN, convolutional neural network; FCN, fully connected neural network; 
GAN, generative adversarial network; HR skin, hierarchically resistive skin; LSTM, 
long short-term memory; NN, neural network; PAA, poly(acrylic acid); PDMS, 
polydimethylsiloxane; SV data set: somatosensory-visual data set; SWCNT, 
single-walled carbon nanotube; u-AuNW, ultrathin Au nanowire; v-AuNW, 
vertically aligned Au nanowire. Panel b reprinted from ref. 181, Springer 
Nature Limited. Panel c reprinted from ref. 174, Springer Nature Limited. 
Panel d reprinted from ref. 183, Springer Nature Limited.
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to achieve this goal181. If these sensors are connected in parallel, the 
overall resistance change can reflect data from the different sensing 
layers. The collected biomechanics data can be decoded from a unified 
and multilayered sensing device using machine-learning models, and 
this strategy was used for the recognition of neck motion, heartbeat, 
breathing and touches to the neck181 (Fig. 3b).

Tissue biomechanics data also can be efficiently integrated with 
image-based data (Fig. 3c). For example, the accuracy of hand motion 
recognition was improved by combining vision-based gesture recogni-
tion and tissue biomechanics data174. Such data fusion architecture can 
use pretrained image classification models, which can reduce training 
time, address data shortage, enhance performance and enable transfer 
learning by modifying the pretrained model182. The output from the 

pretrained image classification model can then be merged with strain 
data for the final classification.

Sensor fusion for internal biomechanics decoding. Sensor fusion 
is also highly effective at internal tissue biomechanics decoding. For 
example, pulse wave velocity can be calculated by simultaneously 
recording electrocardiography signals and blood pressure measured 
through A mode ultrasonography183 (Fig. 3d). The pulse wave velocity 
can be calculated as the physical distance between the electrocardi-
ography sensor and the ultrasound device over the pulse arrival time, 
which is helpful to estimate arterial stiffness.

Combining B mode ultrasound imaging data with other sensory 
data has also gained considerable attention184. Especially, integrating B 

Table 4 | Examples of biomechanics decoding using conformable electronic devices combined with data analysis 
algorithms

Categories Application Decoded 
biomechanics

Decoding method ML approach Result

Health 
monitoring

Continuous pulse wave monitoring 
with artery detection

Ultrasound on neck Ultrasound M mode CNN-based model 98.4% accuracy for ideal and 
compromised 460 images178

Cardiac state monitoring, organ 
volume estimation with heart 
image segmentation

Ultrasound on chest Ultrasound B mode CNN-based model 96.01% (axial) and 95.90% (lateral) 
accuracy for location detection118

Seating posture monitoring Pressure under hip Piezoelectric 
pressure sensor

Random forest 96.7% (random forest) accuracy 
for 6 postures267

Disease 
classification

Arterial fibrillation Pressure on wrist Capacitive pressure 
sensor

K-means clustering 100% accuracy for healthy people 
(n = 13) and patients (n = 7)166

Respiratory disease Pressure on chest Triboelectric 
pressure sensor

t-SNE, CNN 99.43% accuracy for 6 diseases268

Lumbar degenerative disease Pressure on sole 
of the foot

Piezoelectric 
pressure sensor

SVM 100% accuracy for healthy people 
(n = 10) and patients (n = 10)144

Robotics Quadruped robot control Strain of fingers Piezoresistive strain 
sensor

CNN-based model 96.7% accuracy for 10 motions in 
the dark situation174

Assistive robot control Ultrasound 
on lateral 
gastrocnemius 
muscle

Ultrasound B mode CNN 95.8% (23 out of 24) cases 
exhibited <10% N-RMSE for plantar 
flexion moment prediction186

Underwater robot hand control Strain of fingers Crack-based strain 
sensor

MLP 98.1% accuracy for 20 gestures152

Communication Sign-to-speech translation Strain of each finger Triboelectric strain 
sensor

SVM, PCA 98.63% accuracy for 11 gestures134

Facial motion detection Strain on face Piezoelectric strain 
sensor

K-NN 86.8% (healthy people) and 75.0% 
(patients with ALS) for 3 motions90

Mouth motion recognition Strain on face Piezoresistive strain 
sensor

CNN 87.53% accuracy for 100 words25

Vocal-less communication Strain on neck Piezoresistive strain 
sensor

t-SNE, CNN-based 
model, SVM

99.05% (5 phonemes, 4 tones, 
6 words from healthy people), 91% 
(6 sentences from patients with 
laryngectomy)177

Human–machine 
interface

Full body motion visualization Strain of multiple 
body parts

Crack-based strain 
sensor

CNN 100% accuracy for 6 motions140

Hand motion classification Strain on wrist Crack-based strain 
sensor

LSTM 96.2% accuracy for 5 motions158

Motion-based keyboard typing and 
object detection

Strain on finger Percolation-based 
strain sensor

Transformer 93.1% accuracy for 26 keypads162

ALS, amyotrophic lateral sclerosis; B mode, brightness mode; CNN, convolutional neural network; K-NN, K-nearest neighbour; LSTM, long short-term memory; M mode, motion mode; ML, 
machine learning; MLP, multilayer perceptron; N-RMSE, normalized root mean square error; PCA, principal component analysis; SVM, support vector machine; t-SNE, t-distributed stochastic 
neighbour embedding.
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mode ultrasound imaging of muscles with surface EMG data obtained 
from the ambulation analysis is promising for neuromuscular 
monitoring185,186. Sensor fusion achieves superior classification accu-
racy compared with approaches that leverage single data sets from 
either B mode ultrasound imaging or surface EMG185.

Applications
Advancements in conformable devices for decoding external and 
internal tissue biomechanics rely on advanced materials, structural 
designs and data-driven approaches to improve their functionality. 
By integrating sophisticated machine-learning algorithms and sensor 
fusion techniques, these devices are capable of capturing and analys-
ing biomechanical data with remarkable precision, paving the way for 
new applications in medical diagnostics, rehabilitation and wearable 
technologies.

Applications of external tissue biomechanics decoding
The development of non-invasive conformable methods for decod-
ing external tissue biomechanics, combined with sensor fusion and 
machine-learning techniques, has enabled a broad range of applica-
tions. These applications span from daily health-care monitoring, reha-
bilitation and diagnostics to human–machine interfaces, including 
prosthetics, exoskeleton control and AR and VR systems.

Motion detection. One of the most promising applications of exter-
nal tissue biomechanics decoding is the detection of body motion, 
including the motion of various joints such as finger, wrist, elbow, 
shoulder, knee, ankle, neck and back187–189 (Box 1). Body motion detec-
tion can be applied in multiple fields including health care, AR and VR 
and robotics20,190. For instance, joint injuries such as spine fatigue 
can be alleviated by using motion detection devices191,192. Motion 
detection can also be used to gain insights into diseases such as 
Parkinson disease through the monitoring of gait motion193,194. In 
AR and VR technology, sensitive body motion detection can reduce 
discomfort and improve the connection between the real and virtual 
worlds195–197. Devices can be directly attached to the joints or to adja-
cent muscles that control the joints. Devices conformably attached 
to the joints (for direct detection of joint movements) should be 
highly stretchable as the deformation range of the joints is very large 
(around 135o, 140o, 130o and 100o for knee, elbow, wrist and fingers, 
respectively)198,199. For this purpose, nanomaterials with high aspect 
ratio (1D and 2D), composites or fibre-based piezoresistive and tribo-
electric devices have been utilized200–204. Similar to EMG, conformable 
biomechanics sensors can also monitor muscle deformation to track 
joint motion, but highly sensitive devices utilizing piezoresistive, 
iontronic, triboelectric and piezoelectric mechanisms are required 
for this purpose204–208.

Cardiac and lung activities monitoring. Although the heart and lungs 
are internal organs, their dynamic activities induce the mechanical 
deformation of the external skin. By measuring this deformation, car-
diac activities such as heart rate, breathing rate and blood pressure can 
be monitored16,209 (Fig. 4a). Lung activity causes the continuous move-
ment of the rib cage and airflow from the nasal area and the mouth. 
Hence, various information including respiration rate, breathing pat-
tern and lung volume can be monitored to diagnose chronic respiratory 
and infectious diseases210. To monitor such lung activities, wearable 
strain sensors with piezoresistive mechanisms can be attached to the 
rib cage and abdomen to measure the expansion and contraction of 

the torso127. After calibration, the lung volume and respiration rate can 
be correlated with the resistance change of the piezoresistive sensor 
attached to the rib cage127. Various sensing mechanisms including 
piezoelectric, triboelectric, piezocapacitive and piezoresistive effects 
can be used to measure airflow and verbal activities including respira-
tion rate, coughing and speaking211–213. As an example, airflow patterns 
collected from external biomechanics sensors and analysed using a 
decision tree algorithm could be used to identify various chronic res-
piratory diseases including asthma, bronchitis and chronic obstructive 
pulmonary disease213.

Because skin deformation induced by cardiac activity is 
extremely weak (about 4 Pa for peak incident pulse wave observed 
from the wrist pulse)214,215, a highly sensitive strain or pressure sensor 
is required16,209. Architectures developed to improve the sensitivity 
of pulse measurement systems include Si nanostructures, micro-
structured triboelectric sensors, thin piezoelectric pressure sensor 
arrays and microcrack-based strain sensors54,86,215,216. In addition, 
as blood pressure calculations based on pulse waves are challeng-
ing, deep-learning algorithms have been adopted to analyse the 
data. For example, blood pressure data obtained from a carbonized 
fabric-based conformable strain sensor array and analysed using a 
deep-learning algorithm had an accuracy similar to data gathered 
using the traditional manual cuff method16.

Speech recognition. Speech is an extremely essential and efficient 
communication tool for humans. However, speaking can be disrupted 
by various physical disorders, including disorders in organs responsi-
ble for speaking (tongue, lips, jaw, vocal cords and lungs) or neurologi-
cal diseases (stroke, cerebral palsy, Parkinson disease and dementia)177, 
and by environmental noise. Speech recognition can be realized by 
monitoring various interactions including the vibration of the vocal 
cord, the movement of the upper esophagus muscle and movements 
in facial motion90,177,217 (Fig. 4b).

To collect fruitful insights, the sensor should be highly sensitive 
and have fast response time. Ideally, devices should have a response 
time of <10 ms as this is the timescale of facial skin deformation during 
speech. Such a fast response time was realized by ultrathin piezoresis-
tive Si nanomembranes (around 3.4 µm) and piezoelectric devices25,90 
(around 7 µm). To monitor the vibration of vocal cords, sensors should 
be able to monitor vibration frequencies up to 1 kHz, which can be 
realized by nanomaterial-based and microcrack-based piezoresis-
tive and piezocapacitive sensors177,217,218. Waveforms of external tissue 
deformation collected from conformable devices can be analysed 
for classification tasks with machine-learning models including CNN 
generally after preprocessing with FFT90 (Fig. 4b).

Skin modulus measurement. Skin modulus can be used to 
determine various skin-related diseases including scleroderma, 
Ehlers–Danlos syndrome, psoriasis, eczema, melanoma and can-
cer cell development5. Devices for measuring the skin modulus are 
usually composed of two parts: an actuator to generate acoustic waves 
that propagate through the skin and a sensor to harness acoustic 
waves coupled with the skin (Fig. 4c panel). The actuator can be an 
electromagnetic resonator or piezoelectric transducer, and the sensor 
can be a strain gauge or piezoelectric sensor4,5. When the mechani-
cal vibration is generated from the actuator, the generated waves 
propagate through and interact with the underlying skin. After inter-
action, the properties of the propagating wave (frequency, phase and 
velocity) are changed depending on the mechanical properties of the 
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skin4,5. This coupled wave can be read from the adjacent conformable 
devices, and the skin modulus can be calculated by analysing the 
readout values4 (Fig. 4c).

Applications of internal tissue biomechanics decoding
For internal tissues, conformable devices can be used for high-resolution 
imaging in a non-invasive manner. In addition, advanced data analysis 

techniques including machine learning have enabled efficient and 
accurate health monitoring and diagnosis.

Organ movement monitoring. The most rudimentary but impor-
tant application is the monitoring of internal organ movements. The 
dynamics of various organs including bladder106, heart118, diaphragm114, 
muscle179, liver219 and blood vessels183 has been successfully decoded 
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with ultrasonography from conformable ultrasonic transducers. In 
detail, organ volume monitoring106,118, electrophysiological analysis183, 
blood volume and velocity analysis118 have all been successfully dem-
onstrated. Obtaining such biomechanical information from conform-
able devices can contribute to digital health for daily monitoring, 
early-stage disease detection and personal care not only in hospitals 
but also in daily life220.

In addition, advancements in data analysis have improved the 
efficiency of conformable ultrasound imaging devices. For example, 
a conformable ultrasound imaging device was shown to continuously 
track movements of internal organs by integrating a deep-learning 
model178 (Fig. 4d panel), enabling the robust measurement of heart rate 
and blood pressure even during dynamic exercises178. Moreover, organ 
ultrasound image segmentation with convolution-based deep learning 
allowed the isolation of data from the target organ from redundant 
non-target tissues and background noises for more effective analysis118 
(Fig. 4e panel). This approach enabled the calculation of the heart 
volume variance and cardiac output with an accuracy comparable with 
conventional imaging techniques.

Organ characteristics monitoring. The mechanical properties of deep 
tissues are directly related to their physiological states and to disease 
progression221. The formation of abnormalities including tumour 
and cysts in breast tissues6 and the progression of muscle tissue’s 
fatigue179 can be decoded with the ultrasound-based mechanical char-
acteristics analysis. In addition, the stiffness of blood vessels can be 
estimated by combining biomechanics decoding and electrophysiol-
ogy monitoring182. The 3D elastic modulus mapping of deep muscle 
tissue was demonstrated using conformable ultrasonic transducer 
arrays179. By integrating images obtained from different steering angles  
of ultrasound, 2D displacements within deep tissues can be measured 
and concatenated into 3D images. This approach enables the mapping of  
the spatial modulus of deep tissues, providing a detailed assessment 
of their mechanical properties.

Conformable ultrasound devices can also be used to monitor 
acute liver failure by measuring the modulus of the organ219 (Fig. 4f). 
The shear waves induced by acoustic wave in the tissue can be decoded 
with B mode ultrasound imaging, which helps in evaluating the stiffness 
of the tissue for elastography. The progression of the disease can then 

be estimated from the measured elastic modulus of the liver through 
the linear regression analysis.

Outlook
Soft tissue biomechanics provides some of the most intuitive insights 
into the physiological processes of the human body. Owing to rapid 
advancements in materials, device designs and data analysis tech-
niques, the conformable devices have enabled the effective decod-
ing of both external and internal tissue biomechanics on soft tissues. 
However, important challenges still need to be addressed before these 
devices can be effectively implemented in real-world applications.

Long-term operation
Many applications of conformable devices require long-term and con-
tinuous measurements, but several factors hinder their stability over 
extended periods of use. First, because most conformable devices are 
ultrathin, they are vulnerable to mechanical damage during daily activi-
ties, which can include external impacts, rubbing or large strains222. To 
address this issue, devices have been protected by additional plastic 
covers or medical tape, which may limit the operation and flexibility 
of the device90,223. The use of self-healing soft materials, which offer 
features such as fast healing time (<1 min) and high healing efficiency 
(almost 100%)224,225, could be a promising strategy to address this 
limitation226. However, the application of self-healing soft materials 
to soft tissue biomechanics decoding has not been widely investigated.

Another limitation preventing long-term operation arises from 
the fact that the device can block sweat glands, which leads to skin 
inflammation. To mitigate this problem, devices can be designed to 
allow sweat gland function, either by using porous device structures227 
or by adopting breathable fibre networks or textile substrates228.

Another important factor that should be considered is the inter-
facial adhesion between conformable devices and biological tissues. 
Owing to a mismatch in mechanical properties (Box 2), the contact 
interface can easily be delaminated, which results in inaccurate sensing 
and device failure229,230. One approach to overcome this limitation is to 
enhance the interfacial bonding by incorporating functional groups into 
soft materials that can form strong chemical bonds with biological tis-
sues. For example, chemical moieties with amine groups can strengthen 
the interface by forming strong covalent bonds with biological tissues229. 

Fig. 4 | Examples of external and internal tissue biomechanics decoding. 
a, Conformable devices for blood pulse wave monitoring. Schematic illustration 
of the working principle of the device (top left). Decoded waveforms from each 
sensor channel at different positions on the skin (top right). Preprocessed 
input data are trained with the convolutional neural network (CNN) model 
followed by fully connected (FC) layers, which predicts and measures blood 
pressure, pulse pressure variation, cardiac output, stroke volume and system 
vascular resistance independent of their position over the artery (bottom). 
b, Conformable devices for speech recognition of a patient with amyotrophic 
lateral sclerosis (ALS). A photograph of the conformable device attached 
to the chin of the subject (top left). Schematic illustration of multichannel 
strain measurements (top right). Decoded multichannel strain data can be 
trained with dynamic time warping (DTW) and K-nearest neighbour (K-NN) 
methods, which enable speech of a patient with ALS (bottom). c, Conformable 
devices for skin modulus measurement. A photograph of a conformable 
piezoelectric actuator and sensors attached to mock skin (left). Photographs of 
a conformable electromagnetic actuator and a metal thin film strain gauge. The 
calculated skin modulus from each sensor enables lesion pathology mapping 
on skin (right). d, Organ movement monitoring with dynamic target detection. 

Schematic images obtained after utilizing M mode ultrasound (US) images 
for carotid artery (CA) detection (top). The analysis diagram of CNN model-
based classification and pulse wave decoding method (bottom). e, Organ 
movement monitoring with image segmentation. Process diagram of the 
deep-learning-based image segmentation method operated with stretchable 
US patch. The CNN model and the principal component analysis method are 
used to estimate the left ventricular (LV) volume, stroke volume, cardiac output 
and ejection fraction from the segmented B mode US organ images. f, Organ 
characteristics monitoring for disease monitoring with US devices. Schematics 
of a wearable bioadhesive US elastography device using acoustic radiation 
force impulse (ARFI), which enables elastography of the liver to estimate acute 
liver failure (ALF) progression (top). Pathological staining results and linear 
regression analysis are used to estimate the mechanical modulus (bottom). 
nCA, noncarotid artery. Panel a reprinted with permission from ref. 16, 
AAAS. Panel b reprinted from ref. 90, Springer Nature Limited. Panel c (left) 
reprinted from ref. 5, Springer Nature Limited. Panel c (right) reprinted from 
ref. 4, Springer Nature Limited. Panel d reprinted from ref. 178, Springer Nature 
Limited. Panel e reprinted from ref. 118, Springer Nature Limited. Panel f 
adapted from ref. 219, AAAS.
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Another strategy is to use thin dry hydrogels that absorb the water on 
the biological tissues, resulting in strong bonding229.

Wireless and portable peripheral electronics and their  
power management
Most studies on conformable devices mainly focus on the sensing 
component. However, to read electrical values from conformable 
devices, other electrical components, such as the data acquisition 
system, should also be optimized. Most conformable devices are con-
nected with external data acquisition systems through wires, which 
are not feasible for real applications. Hence, peripheral electronics, 
including data acquisition systems, communication and power man-
agement units, should be compact, wearable and allow the receiving 
and transmission of data wirelessly. Moreover, for the decoding of 
complicated modalities such as internal tissue biomechanics using 
ultrasound imaging, advanced chip design using approaches such as 
field programmable gate arrays is required to handle signal transmis-
sion and reception from multiple sensing units231,232. Efficient power 
management is also critical. Although rechargeable batteries can be 
integrated, strategies that reduce the need for frequent charging are 
needed. Approaches include the optimization of the data acquisition 
system components (amplifiers, filters or others)233, the integration of 
energy harvesters such as solar cells and nanogenerators234,235 and the 
utilization of self-powered sensors with nanogenerators harnessing 
piezoelectric or triboelectric effect236. Wireless power transfer technol-
ogies that can charge the batteries using electromagnetic fields or even 
operate the system without batteries are also promising methods91,237.

Advanced machine-learning architectures
Current machine-learning algorithms are generally built at the software 
level. Hence, data are sent to a server for training and inference, which 
causes latency, data privacy issues and extra power consumption238. 
To alleviate these issues, on-device computing, which downloads the 
trained weight values or models into portable computing devices, such 
as smartphones or personal computers, and runs inferences in the 
portable hardware, is gaining major interest238. To achieve on-device 
computing, novel neuromorphic memristive devices with portable, 
power-efficient and even conformable neuromorphic computing 
devices can be effective, as conventional complementary metal-oxide-
semiconductor-based neuromorphic hardware requires large compo-
nents and are not conformable239–241. Furthermore, applying model 
minimization strategies to deep-learning models242,243 could solve 
this bottleneck towards the realization of fully portable and learnable 
conformable tissue biomechanics decoding devices.

Published online: xx xx xxxx
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